
❖Achieved our requirements
• Make ensures new code always executes and new

results appear in the paper
• Macros provide searchable patterns to find result

references
• Docker provides a portal environment used for both

development/writing and reproducibility

❖Effort paid off multiple times:
• The use of familiar tools ensured adoption was

easy and seamless
• We had to redo a set of numerical results, and we

could swap them out easily
• After an initial round of reviews for the paper we

were able to pick up right away with no issues
months later

Experience with Reproducibility and Consistency

in Writing an Academic Paper
Joseph Wonsil1, Nichole Boufford2, Margo Seltzer1

1The University of British Columbia 2Oracle Labs, work performed at UBC

Introduction

The iterative and synchronous processes of
writing code for an analysis and writing a paper
based on that analysis can lead to
inconsistencies between the data, the figures in
the paper, and the prose. We wrote a consistent
and reproducible paper driven by standard
software engineering tools and discuss our
lessons learned.

Workflow to ensure analysis-to-paper connection

Results are saved as macros in directories (1)(2), referenced
in the prose via their macro (3), and the values inserted by
our code (4) before compilation into its final form

Representative Makefile

Make drives the whole process, ensuring when the paper is
compiled any new results are inserted into the document

Requirements

1. Each build of the paper should reflect any
changes made to the code and results

2. Referencing a result while writing the paper
should be distinguishable from the rest of the
prose.

3. The pipeline should be able to execute on others'
machines with minimal effort.

Implementation

The Bad

The Good

D
riv

e
n

 b
y
 M
a
k
e

a
n

d
 e

x
e

c
u

te
s
 in

 D
o

c
k
e

r

Lessons Learned

❖Automatic insertion of results can cause prose
mismatches

❖Lacks detailed provenance tracking of result usage, in
an evolving analysis this leads to extra files and
potential use of old files

Examples of file build-up over time

A script might have generated a file at one time (1), might continue
to generate it but it’s not currently needed (2), or might have
generated it at one time, does not anymore, but the file is still being
used (3)

	Slide 1

