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ABSTRACT
The importance of reproducibility in machine learning is increas-
ingly recognized, leading to greater interest in training for repro-
ducibility. Effective teaching of reproducibility skills prepares stu-
dents for sustainable industry careers, provides students with a
deeper understanding of research processes, and enhances the re-
producibility ecosystem. However, instructors aiming to integrate
reproducibility tasks into machine learning courses may find it chal-
lenging due to students lacking the necessary skills and experience
needed for reproducing research. To address this issue, we have
developed learning materials to prepare machine learning students
to engage in reproducibility assignments, irrespective of their past
research involvement. We present two interactive “reproducibility
case studies” that guide students in replicating machine learning
results. We have used this approach in an introductory machine
learning class and found that it helped clarify to students how to
approach the reproducibility assignment.
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1 INTRODUCTION
With increasing recognition of the importance of reproducibility
in computational science, has come greater interest in training sci-
entists and engineers to engage in reproducible research. Toward
this end, a number of experience reports have discussed efforts to
integrate reproducibility content into undergraduate or graduate
coursework [2, 3, 5–7, 9–16]. In machine learning specifically, [9]
and [16] have demonstrated the benefits of integrating reproducibil-
ity content into machine learning courses, with students reporting
having a more critical perspective of results and a deeper under-
standing of the research process. Teaching these skills effectively
can prepare students for industry careers where they will be asked
to produce work with consideration to long-term sustainability and
benefits the overall reproducibility ecosystem by encouraging the
utilization of existing artifacts [5].
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While reproducibility can be integrated in the classroom in a
variety of ways, one popular approach is to use a reproducibility as-
signment, where students are tasked with reproducing a published
result related to the topic of the course. However, incorporating
reproducibility into a course, especially at the introductory level
and especially in the form of a reproducibility assignment, can be a
difficult task for instructors. This is primarily due to the students’
lack of necessary skills and experience needed for reproducing
research. In the literature, a key factor for success was the ma-
terials used to scaffold the learning process. These may include
conventional homework assignments that equip students with the
skills to engage with and reproduce research results [7]; home-
work and lab sessions to prepare students for a more challenging
project involving best practices for reproducibility [11]; or weeks of
discipline-specific instruction and discussion about research meth-
ods and critically reading papers in the field [9]. Similarly, in our
own experience using a reproducibility assignment in an introduc-
tory machine learning course at the graduate level, many students
struggled without extra scaffolding. The process of reproducing
a published result, which involves dissecting a paper into its key
claims, identifying supporting evidence, and detailing the compu-
tational experiments that yield this evidence, can be overwhelming
for students without prior research experience.

To address this problem, we introduce two “reproducibility case
studies” aimed at graduate students without prior research experi-
ence, that are designed to walk students through the steps involved
in reproducing a published result in machine learning. We have
used these materials in an introductory machine learning class and
students reported that it helped clarify to them how to approach the
reproducibility assignment. We make these open source materials
available to the broader community as a source code repository, and
as an artifact that can be played back directly on the Chameleon
Cloud [8] testbed. It is our hope that by integrating reproducibil-
ity into the curriculum, we can equip students with the necessary
skills to critically evaluate and reproduce scientific findings, thereby
contributing to the integrity and robustness of scientific research.

2 OUR APPROACH
To help students understand how to approach the task of repro-
ducing a research paper, each set of materials walks through the
following steps in the context of a specific published result:
• Identify the specific, falsifiable claims in the paper.
• Find the evidence (figures, tables) that supports these claims.
• Determine the experiments (including all details necessary to
reproduce the experiment) to obtain these results.

• Find artifacts (author code, third party code, pre-trained models,
data) that can be used to run these experiments.

• Implement and execute the experiment, and compare the results
to the published finding.
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The material includes discussion questions which prompt stu-
dents to reflect on what they have learned. At the end of each case
study, we suggest additional experiments to validate more claims,
with minimal or no modifications to the existing code.

3 CASE STUDY: WARM STARTING
Our first case study reproduces results from “On Warm Starting
Neural Network Training” [1]. This work examines the distinction
between training a model with randomly initialized weights versus
using weights from a model previously trained model.

This paper was selected because it does not require advanced
knowledge of neural networks, making it suitable for an intro-
ductory level course in machine learning. By engaging with this
material, students learn how to identify the various claims in the
paper and locate the corresponding experiments that verify these
claims. Additionally, students acquire practical skills in utilizing
open-source code and available data to replicate these experiments.

4 CASE STUDY: VISION TRANSFORMER
The second case study focuses on “An Image is Worth 16x16 Words”
[4], which introduces the Vision Transformer. This paper is highly
influential in the field of computer vision, which makes it relevant
and interesting to many students.

In contrast to the first case study, students use pre-trainedmodels
rather than training models from scratch. Furthermore, students
will not be able to reproduce some findings that rely on a private
dataset or a model that has not been publicly released. By engaging
with this material, students will better understand how the use of
private data affects the reproducibility of a result.

5 USE IN THE CLASSROOM
We have used these materials as a precursor to a reproducibility as-
signment in a graduate-level introductory machine learning course
at NYU. While we have not conducted any formal study, our sub-
jective experience has been that students asked fewer questions
about identifying claims, evidence, and experiments, than in previ-
ous semesters where these materials were not available, and that
the student submissions showed a better understanding of how to
engage with published work in this context.

Although these materials were designed to prepare students
for a reproducibility assignment, they can also be used in other
contexts. For example, they can help students learn more about the
methodology of conducting research in machine learning, or they
can be used to teach students about the specific topic of the case
study (e.g. to teach about the Vision Transformer architecture).

6 ARTIFACT DESCRIPTION
We release the following materials for broader use:

• Case Study: Warm Starting as a Github repository1 and as an
artifact to replay on Chameleon2 .

1Github: https://github.com/teaching-on-testbeds/re_warm_start_nn
2Trovi Artifact: https://chameleoncloud.org/experiment/share/5b5717df-9aa9-470f-
b393-c1e189c008a8

• Case Study: Vision Transformer as a Github repository3 and
as an artifact to replay on Chameleon4.
Each case study is organized as a series of interactive Python

notebooks: an overview notebook, one or more notebooks about
the claims in the paper, one or more notebooks with experiments
to validate the claims, and a concluding notebook.
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