Poster: NPF: orchestrate and reproduce network experiments

Tom Barbette
UCLouvain
Belgium

ABSTRACT

Networked systems researchers face challenges in their develop-
ment process, transitioning from local testing to scaling experi-
ments on public testbeds. The manual creation of ad-hoc scripts for
parameter exploration and analysis leads to inefficiencies, hindering
the development process and reproducibility.

In this poster, we present a Network Performance Framework
(NPF) that orchestrates experiments automatically, from the step
where a prototype is ready for its first run to the final graphs one
can embed in a paper. The framework generates graphs for each
metric, interactive web pages and Jupyter notebooks that allow
users to interact easily with the experiment’s results.

NPF is easy to start with, as the simplest test description file is
just a list of bash commands to run. Gradually, NPF makes it easy
to deploy an experiment over local and remote testbeds, enabling
complex deployment, synchronization, and data collection. Each
experiment can grow a set of factors (e.g., number of threads, buffer
size, packet length, packet rate, ...) that NPF uses to orchestrate
the experiment and collect performance metrics (e.g., throughput,
latency, ...) of different configurations. NPF helps the researcher
in building their experimental design to select meaningful factors,
automatically finding regions of interest and easily cutting through
multi-dimensional data.

1 NETWORKED SYSTEMS RESEARCH

Typical networked system research involves developing a proto-
type that will be first functionally evaluated with a client and a
server running on a researcher’s laptop. Progressively, more real-
istic experiments will be conducted over real hardware. For many
systems researchers, a local testbed will be needed to use some
exotic devices (SmartNIC, P4 switches, ...), or need dedicated ma-
chines during a long development process. Some experiments are
then conducted at large scale over public testbeds with reservation
systems like Grid5K[4].

In parallel, the following research cycle will be repeated many
times and on each testbed scale. A new feature or new factor will
be selected to study the system under test and launch a novel
experiment. The researcher will then dig into the generated data,
often through visualization, to evaluate the pertinence of the new
angle or new feature.

In this poster, we present NPF, a tool designed to assist re-
searchers in navigating between testbeds and repeating this re-
search cycle. NPF streamlines the process by providing a unified ex-
periment description file capable of accommodating various testbed
scales and numerous parameter sets. It will enforce good standard
practices like repeating a test multiple times and reporting the
variance. As the number of parameters that could impact a given
system quickly grows exponentially, NPF proposes multiple tools

ACM REP’24 Poster, 2024, Rennes, France

%info
IPerf 2 test
This tests measures the throughput of client/server TCP connection(s)
%variables
=[1-8]

={16,512}
%config
var_names={PARALLEL :Number of parallel connexions,

WINDOW:TCP Window size (kB)3}

%script@server
iperf -s
%script@client
iperf -c ${server:0:ip} -P $ -w $ k & log
echo "RESULT-THROUGHPUT $(cat log | grep -ioE '[0-9.]1+ [kmglbits')"

(a) The NPF script file.

npf-run --test iperf.npf --cluster client=gros-95.nancy.grid5000.fr
server=gros-96.nancy.grid5000.fr

PARALLEL = 8, WINDOW = 16 [run 4/5 for test 8/16]
[o]
[0] Server listening on TCP port 5001
[0] TCP window size: 128 KByte (default)
]
[0] [1] local 10.221.0.1 port 5001 connected with 10.221.0.2 port 47866
[e] [ID] Interval Transfer Bandwidth
[0] [1] 0.0000-2.0002 sec 1.16 GBytes 4.98 Gbits/sec

gros-96 - client [@] RESULT-THROUGHPUT 4.98 Gbits

(b) A sample command line to run the script and its partial output

IPerf 2 Throughput Experiment

100Gbps F= T T T ™
Window size (kB)
soGbpsf| O 16 1
512
5
2 60Gbps| .
=l
3
o
£ 40Gbps [B
=
20Gbps B
Obps

1 2 3 4 5 6 7 8
Number of parallel connections

(c) Graph automatically generated on our local 100G machines.

Figure 1: Simple experiment using iPerf2

to easily go over many areas of the experimental space and quickly
go through the results, finding why the system behaves differently
than expected. NPF also enables comparing different systems under
the same parameters. We believe NPF offers a unique, easier chain
than existing systems to define and evaluate an experimental de-
sign. NPF also provides useful tooling like performance regression
testing not covered here.

NPF, however, does not try to tackle the matter of deploying a
physical topology or loading operating system images on nodes.
Researchers might use Mininet[2] to deploy a virtual topology
on a local machine, use a local testbed that is not automatable
or deploy the same experiment over a real large-scale topology
on Grid5K with an Enoslib[3] script. NPF uses SSH to deploy and
execute an experiment over those physical or virtual platforms, with
capabilities for setup and teardown of the experiment. Therefore,

ACM REP’24 Poster, 2024, Rennes

NPF does not suffer from being tied to specific platforms like Enoslib
which does not offer an easy way to deploy an experiment on a
local testbed, or POS[5] that is tied to its author’s testbed. This is a
strong limitation for researchers who need to use local hardware
or multiple testbeds.

2 NPF

Figure 1 (a) shows a simple NPF script that will run iPerf2 between
a client and a server to evaluate the performance of one or more
TCP connections. The heart of the experiment is based on bash
scripts, as we expect the researcher to start running their own
external program with a few various parameters and iteratively
take advantage of NPF to generate complex configuration files and
deployment scenarios. The command to launch the experiment is
shown in figure 1 (b), along with one of the replications (4/5) of
one of the 16 possible variable combinations. The resulting graph
as produced by NPF can be seen in figure 1 (c). NPF itself is written
in around 7K lines of Python 3.

Deployment NPF will handle a series of scripts to run on machines
taking a specific role. In the example, there are two roles: client and
server. Roles are, in turn, mapped through the command line to
physical nodes according to the desired topology. Figure 1 shows
the IP address of the server is taken from its actual configuration,
with possible tweaking falling outside the scope of this short intro-
duction. NPF can ensure synchronization between multiple scripts,
ensuring one command runs after some initialization phase has
finished, for instance. The NPF script can also generate application
configuration files using a templating system, which will then be
distributed to the relevant roles over ssh.

Experimental design NPF will re-execute the experiment under
various different settings as described by the factors defined in
the %variables section of the test script. NPF supports expressing
many types of experiment variables, such as a list of parameters,
ranges, and ways to explore them, such as logarithmic exponentia-
tion or WSP[1] to explore a subset of the space maximizing distance
in the parameters space.

Re-useable modules NPF comes with the support of modules,
a way to define standard sub-scripts following the same format.
Modules can spawn a packet generator, run a profiling tool like Perf
to count the number of CPU events or build a graph of the time
spent in the system’s functions, a standard nginx web server on a
particular role, an HTTP client generator, or ensure a particular
CPU frequency.

2.1 Data collection

The data collection process is based on the standard output, as
shown in the example. The script can report many metrics that will
be collected. NPF will parse the standard output of all scripts for
the particular format RESULT-METRIC X. It also supports metrics
evolving over the course of the experiment like a latency metric
reported every second.

2.2 Analysis of results

NPF can export the data collected as CSV but provides multiple
internal tools to quickly analyse the result of an experiment.

Tom Barbette

Graphing A graph is automatically generated for each metric of
the experiment, using different types of plots (supporting heatmaps,
boxplots, bar plots, scatter plots, error bars, ...), grouping factors
when needed to make the results understandable as quickly as
possible. While providing some styling options for a publication-
ready graph, the primary goal is to provide the researcher with a
simple visualization during the development phase.

Statistical analysis As the number of factors can quickly grow,
NPF will compute the feature importance of each factor, along with
other statistics and metrics of covariance to help the researcher
decide if some variant of the software under test provides better
performance. After assessing if a factor is only marginally impact-
ing results, the researcher can inspect in more detail only those
factors of importance. NPF includes a database so the results of an
experiment are cached, only executing the experiment for the new
value of factors.

Web page NPF can generate a web page that is more interactive
than a graph, changing which factor is used for every axis and
splitting a graph in multiple sub-graphs, one per value of a factor.
The web page generated for figure 1 is available at https://tbarbette.
github.io/npf-web-sample/. This can be used to link an interactive
online version for the equivalent graphs of a paper.

Jupyter notebook NPF can also generate a notebook, including the
data collected from the experiment and code to generate appropriate
graphs, ready to be tempered.

3 CONCLUSION

The goal of this poster is to invite researchers to try our tool which
we believe fills a space to enable more reproducible research. At the
same time, NPF greatly helps its users to develop large-scale experi-
ments in no time. Experience in artifact evaluation committees also
shows having an ecosystem of a few frameworks that, like NPF, fill
that space for the specific needs of their community would greatly
help in understanding the canvas and reproducing experiments.

NPF is available at https://github.com/tbarbette/npf and the doc-
umentation on http://npf.readthedocs.io. It is distributed under the
GPL3 license.

4 ACKNOWLEDGEMENTS

The author would like to acknowledge all contributors of NPF,
particularly Simon Cornelis for developing the Jupyter Notebook
integration and Philippe Dan for the website generation.

REFERENCES

[1] J. Santiago et al. 2012. Construction of space-filling designs using WSP algorithm
for high dimensional spaces. Chemometrics and Intelligent Laboratory Systems 113
(2012), 26-31.

[2] K Karamjeet et al. 2014. Mininet as software defined networking testing platform.
In International conference on communication, computing & systems (ICCCS). IEEE,
139-42.

[3] R-A. Cherrueau et al. 2021. Enoslib: A library for experiment-driven research in
distributed computing. IEEE Transactions on Parallel and Distributed Systems 33, 6
(2021), 1464-1477.

[4] R. Bolze et al. 2006. Grid’5000: A large scale and highly reconfigurable experi-
mental grid testbed. The International Journal of High Performance Computing
Applications 20, 4 (2006), 481-494.

[5] S. Gallenmiiller et al. 2021. The pos framework: A methodology and toolchain
for reproducible network experiments. In Proceedings of the 17th International
Conference on emerging Networking EXperiments and Technologies. 259-266.

https://tbarbette.github.io/npf-web-sample/
https://tbarbette.github.io/npf-web-sample/
https://github.com/tbarbette/npf
http://npf.readthedocs.io

	Abstract
	1 Networked Systems Research
	2 NPF
	2.1 Data collection
	2.2 Analysis of results

	3 Conclusion
	4 Acknowledgements
	References

